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Abstract

This work presents a novel approach to visualizing the evolution
of neural network parameters during training, with the focus on re-
inforcement learning models. Through examining changes in weight
matrices, we aim to potentially uncover insights into how models learn
and adapt over time. In our project we use a reinforcement learning
agent trained to play the classic Snake game. During training we ex-
tract weights from 3 layers in the neural network to visualize weight
distributions across training episodes. This visualization highlights
parameter evolution and layer-specific transformations, offering an a
way to understand a part of the learning process. Our findings should
not only enhance interpretability in reinforcement learning but also
may suggest pathways for improving model training and optimization
strategies.

1 Introduction

Neural networks are powerful computational models that learn to approx-
imate complex functions through layers of interconnected neurons. Each
neuron applies mathematical transformations to input data, and these trans-
formations, combined across layers, enable the network to recognize patterns
and make predictions. However, the complexity of these transformations and
the interactions of weights connecting neurons pose significant challenges to
understanding how models make decisions.

In feedforward neural networks, neurons are organized into layers, with
each layer fully connected to the next. Neurons apply linear transformations
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followed by non-linear activation functions, progressively refining the features
of the input data until the final output is produced. During training, the net-
work’s outputs are compared to expected values, and weights and biases are
adjusted using backpropagation, guided by the gradient of a loss function.
While this process enables models to achieve high accuracy, it obscures the
inner workings of the model, leaving the reasoning behind predictions diffi-
cult to interpret. This opacity is particularly problematic in reinforcement
learning, where models are trained to maximize long-term rewards through
trial-and-error interactions with an environment.

Understanding how weights evolve during training can illuminate the
learning process and demystify the factors influencing predictions. Visualiz-
ing these changes provides insights into the relationships between features,
neuron activations, and the model’s overall performance. In our project we
employ color mapping techniques in order to highlight the evolution of weight
distributions, allowing us to track how initially random parameters converge
toward meaningful patterns that approximate the underlying function of the
problem.

In order to do so, we focus on a reinforcement learning model trained
to play the classic Snake game, where the agent must navigate a grid-based
environment to consume apples while avoiding collisions. Using rewards to
reinforce successful behaviors and penalties for errors, the model learns to im-
prove its performance over time. To better understand this learning process,
we extract and analyze the weight matrices of the neural network. These ma-
trices, representing the weighted connections between neurons, are visualized
using Min-Max normalization and scalar mapping techniques to reveal their
dynamics across training epochs. By interpreting these visualizations, we
aim to uncover patterns in parameter updates and gain deeper insights into
how reinforcement learning models adapt and refine their decision-making.

2 Previous Work

In our CS 453 Scientific Visualization class [3], we explored various methods
to visualize scalar fields, which provided a foundation for our current work on
visualizing neural network parameters. In our first project, we learned how
to create different types of visualizations, such as gray-scale maps, bi-color
maps, rainbow maps, height maps, and combined maps. Each technique had
its strengths and weaknesses in representing scalar fields. For instance, 3D

2



height maps offer more detailed representations through the added dimen-
sion, but the challenge is that a single frame of this visualization is still a
2D projection of a 3D object. This loss of dimension means that the rela-
tionships between points are only apparent when observing changes across
multiple frames.

This limitation became apparent in our report, where the dynamic move-
ment of the visualization was lost in the static nature of screenshots. To
mitigate this, we applied color mapping to 3D objects, allowing patterns to
emerge that make the depth and relationships of the 3D data more compre-
hensible to the human eye. This approach of using color mapping to reveal
patterns in complex data is a key inspiration for our current project, where
we use color mapping to visualize the evolution of neural network weights
during training. In our project, we aim to visualize how different weights
and biases change as the reinforcement learning model learns to navigate the
Snake game, providing insights into how the model adapts and learns over
time.

In our CS 434 Machine Learning and Data Mining course [1], we learned
about neural networks. The structure of the course allowed us to first under-
stand the process of logistic regression and methods to fit a classifying line
in a dataset to separate classes. The fascinating revelation in the neural net-
work section was how a neural network was simply a nonlinear combination
of logistic regressor. This idea highlighted the capabilities of combining linear
functions in a way to represent an unknown complex function. This course
proved to be extremely useful in understanding how our Snake model worked
and how we could apply our CS 453 visualization techniques to interpret the
model’s learning process more effectively.

In our CS 434 Machine Learning and Data Mining course, we also par-
ticipated in an in-class demonstration using an online neural network play-
ground. This tool provided a dynamic visualization of a neural network
during training, showing how each neuron progressively specialized in rec-
ognizing specific patterns within the input data. As the network trained,
we could observe the evolution of each neuron’s response to different aspects
of the input, with neurons in the hidden layers gradually becoming more
specialized in recognizing particular features of the data.

This hands-on experience demonstrated the potential of visualizing the
inner workings of a neural network in an intuitive and accessible way. It
emphasized how visualizations can reveal the learning process of a network,
offering insights into how neurons adapt and specialize as the model trains.

3



Figure 1: Screen capture of the demo showing how the neurons learn the spi-
ral pattern of the dataset and how to classify orange and blue dots. Adapted
from [2].

This experience inspired us to explore similar visualization techniques in our
project, where we aim to track the evolution of the weight matrices in our
reinforcement learning model.

3 Background

3.1 Deep Q-Network Implementation

The implemented agent is based on a three-layer Deep Q-Network (DQN)
architecture:

• Input layer: Matches the flattened game board size. For a board of
size n× n, the input dimension is n2.

• Hidden layers: Two fully connected layers with ReLU activations,
each of size hidden size. These layers transform the raw state represen-
tation into increasingly abstract feature representations.

• Output layer: Outputs Q-values for each possible action. The dimen-
sionality of this layer corresponds to the number of actions available to
the agent in the Snake environment.
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3.2 Reward Function

To guide the agent’s learning, a shaped reward function is employed:

• A small positive reward (e.g., +0.1) is given when the agent moves
closer to the apple.

• A small negative penalty (e.g., -0.1) is given when the agent moves
farther from the apple.

• A larger positive reward (+1) is provided when the snake successfully
eats an apple.

• A larger negative penalty (-1) is provided when the snake collides with
walls or its own body, ending the episode.

This combination of rewards and penalties offers a finer granularity of feed-
back, encouraging progress toward the apple while discouraging wasteful or
harmful movements.

3.3 Replay Buffer and Training Process

To stabilize learning, a replay buffer stores transitions (s, a, r, s′):

• Sampling Experiences: During training, mini-batches of past expe-
riences are randomly sampled from the buffer, breaking the temporal
correlations present in sequential observations.

• Loss Function: The Mean Squared Error (MSE) loss is used to min-
imize the difference between the predicted Q-values and the target Q-
values derived from the Bellman equation.

• Target Network: A target network, periodically updated with the
parameters of the main network, is employed to stabilize the training.
This helps prevent oscillations or divergence in Q-value estimates.

3.4 Exploration Strategy

The agent uses an epsilon-greedy exploration strategy:
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• ϵ-greedy: With probability ϵ, the agent chooses a random action to
explore the state-action space. Otherwise, it selects the action with
the highest Q-value.

• ϵ Decay: Over time, ϵ is decayed, gradually shifting the agent’s behav-
ior from exploration toward exploitation as it gains confidence in its
learned policies.

3.5 Game Environment

The Snake environment is a grid-based game:

• State Representation: The state is represented as a flattened 1D
tensor derived from the n×n game board, encoding the snake’s position,
apple position, and obstacles.

• Apple Spawning: Apples are spawned deterministically at predefined
or patterned locations, simplifying the state distribution the agent en-
counters.

• Manhattan Distance:

dmanhattan = |x1 − x2|+ |y1 − y2|

This metric is used to evaluate whether a move brings the snake closer
to or farther from the apple, influencing the shaped rewards.

4 Visualization of Neural Weights

4.1 Weight Extraction and Normalization

Weights are extracted from the trained DQN’s layers during or after training.
To make them suitable for visualization:

• Normalization: Normalize the weights to a [0, 1] range using:

normalized weights =
weights− wmin

wmax − wmin

This normalization preserves relative magnitudes while eliminating the
influence of arbitrary weight scales.
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4.2 PLY File Generation and 3D Visualization

The normalized weights are then mapped to 3D coordinates and stored in
PLY files:

• Vertex and Face Definitions: Each neuron or weight can be repre-
sented as a vertex in 3D space, with color mappings applied based on
the normalized weight values.

• 3D Rendering: For the final step to render our datasets we used
preexisting Project 2 code.

5 Division of Tasks

• Sonny Box: Generate datasets by setting up the Python environment
and Snake game agent.

• Padraic Bergin: Generate visualizations using Project 2 code and
prepare the paper for final submission.

• Both: Discuss findings.
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6 Results

6.1 Layer 1
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6.2 Layer 2
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6.3 Layer 3
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6.4 Plot of results data

Figure 2: The agent scores on average 4.09 reward points across 1000
episodes, with a maximum of approximately 13 points.

6.5 Evaluation

6.5.1 Layer 1 Observations

In the initial episodes, the visualization of Layer 1 shows a diverse range of
data, with distinct red, green, and blue regions clearly visible. This indicates
high variability in the weights during the early stages of training. By the
200th episode, much of the irregularity has diminished, with the visualization
predominantly displaying green values.

Notably, certain red peaks remain consistent across all episodes, suggest-
ing that some patterns in the input data are preserved throughout training.
This observation aligns with the design of the environment, where the snake
and apple consistently spawn in the same locations. These consistencies in
the visualization reflect the model’s ability to adapt and generalize features
from the game board’s initial configuration.
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6.5.2 Layer 2 Observations

Layer 2 is responsible for forming relationships between the input layer and
the output layer, thereby playing a critical role in decision-making. Early
in training (e.g., the first 100 episodes), the visualization is characterized
by high noise, with many sharp peaks and valleys spanning the red, green,
and blue color ranges. As training progresses, the visualizations transition
to predominantly green tones by approximately the 400th episode, and ulti-
mately to a more uniform aquamarine surface with prominent blue peaks by
the 900th episode.

The consistent red peaks observed in Layer 2 suggest biases in the decision-
making process, stemming from the fixed spawning positions of the snake and
apple. These biases indicate that the agent has evolved a stable and con-
sistent strategy in the later episodes. This evolution is further supported
by the uniformity in the visualization and the trends observed in the overall
performance metrics.

6.5.3 Layer 3 Observations

The visualization of Layer 3 reflects the simplicity of the action space in the
snake game, where the agent is constrained to three possible movement di-
rections (excluding the opposite of its current direction). Early in training
(e.g., the first 100 episodes), the visualization shows significant noise, indica-
tive of the agent’s exploration of the action space. By the 300th episode, this
noise dissipates, and the visualizations evolve into a simple and consistent
landscape, reflecting the agent’s convergence to a deterministic and efficient
strategy.

6.6 Conclusion

The weight visualizations across the three layers of the Deep Q-Network
provide valuable insights into the training process and the agent’s learning
dynamics:

• Layer 1: Captures the game board’s consistent features, with notable
patterns reflecting the fixed initial configurations of the environment.

• Layer 2: Demonstrates the model’s ability to form relationships be-
tween the input and output layers, transitioning from high noise to a
uniform and structured representation that reflects a stable strategy.
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• Layer 3: Highlights the simplicity of the action space, with rapid
convergence to a consistent decision-making pattern.

To conclude, the visualizations confirm the model’s ability to adapt, gen-
eralize, and develop an efficient strategy for the snake game. The progressive
simplification and stabilization of the weight landscapes indicate effective
learning and convergence during training.
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